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This paper describes research on the classroom practices of seven teachers who taught a lesson on 
multi-digit multiplication using array-based materials. Students’ understanding of multi-digit 
multiplication just prior to the lesson is contrasted with their performance several weeks after the 
lesson.  Differences among the teachers in the ways they taught the lesson are examined in relation to 
students’ subsequent understanding of multiplication. An important issue was the match (or 
mismatch) between the demands of the lesson and students’ understanding of multiplication prior to 
the lesson. For example, Teacher A carefully scaffolded her students from single-digit to two-digit by 
two-digit multiplication problems using the dotty arrays and her students made substantial progress in 
their understanding of multiplication. Teacher C’s students did not seem to have a solid understanding 
of place value or multiplication with small quantities, and did not learn how to use dotty arrays for 
multi-digit multiplication. Teacher G’s students already understood the partitioning processes needed 
to solve two-digit by two-digit problems prior to the lesson and probably did not benefit much from 
the lesson on using dotty arrays. 

One of the major goals of today’s mathematics instruction is to help students 
understand the structure of mathematics (Lambdin & Walcott, 2007). The greater focus on 
mathematical structure can be seen in The New Zealand Curriculum (Ministry of 
Education, 2007a). In contrast to the previous curriculum document (Ministry of 
Education, 1992), where no mention was made of changes in the nature of the thinking or 
problem solving over year levels, there is a clear progression in the 2007 document (shown 
in the achievement objectives under Number Strategies) from simple additive strategies 
with whole numbers and fractions at level 2 (L2), to additive and simple multiplicative 
strategies with whole numbers, fractions, decimals, and percentages (L3), to a range of 
multiplicative strategies when operating on whole numbers, and simple linear proportions, 
including ordering fractions (L4), to reasoning with linear proportions (L5), and applying 
direct and inverse relationships with linear proportions (L6). These progressions are 
closely aligned with the Number Framework, a key aspect of New Zealand’s Numeracy 
Development Project (NDP), a major government initiative aimed at improving the 
teaching of mathematics and raising the achievement of students (see Bobis et al, 2005; 
Ministry of Education, 2007b). 

The work of Mulligan and colleagues supports the idea that students’ appreciation of 
structure and pattern may be at the heart of differences between high and low achievers in 
mathematics (Bobis, Mulligan & Lowrie, 2008; Mulligan, Mitchelmore, & Prescott, 2004). 
Mulligan’s research shows that low achievers in mathematics do not appear to notice 
structure and regularity in mathematics, but intervention drawing their attention to 
structure and pattern can bring about substantial improvement in their mathematics 
learning. 

The literature on multiplicative thinking and reasoning has been growing steadily over 
the past decade or so. According to Baek (1998), “understanding multiplication is central 
to knowing mathematics” (p. 151). The importance of multiplication and division 
understanding is evident in the NCTM Curriculum Focal Points developed in the US 
(Beckman & Fuson, 2008; Charles & Duckett, 2008; NCTM, n.d.). NCTM (2000a, 2000b) 
sees multiplicative reasoning as one of three crucial mathematics themes (along with 
equivalence and computational fluency) that are interwoven through the Content Standards 
for the middle grades, forming the foundation for proportional reasoning. 
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There are several major differences between additive and multiplicative thinking. For 
example, multiplication and division have proportional structure, whereas addition and 
subtraction have part-whole structure (Sophian, 2007). This means that multiplicative 
partitioning must involve equal-sized parts or groups, whereas additive partitioning may 
result in unequal-sized parts. Additive and multiplicative reasoning are closely linked 
because understanding multiplicative relationships depends on understanding the concept 
of a unit, and “that is generally developed first in the context of additive reasoning” 
(Sophian, 2007, p. 103). It is in considering units of quantification other than one that the 
need for multiplicative relations becomes clear – the unit may be a group (eg, a pair, a trio, 
or another composite unit) or it may be a fractional quantity (eg, one half, one third, etc). 
Young children often don’t understand the importance of keeping units constant, and when 
doing equal sharing, tend to divide a continuous quantity into a particular number of 
pieces, while ignoring the size of the pieces (Sophian, 2007). 

A variety of definitions for multiplicative thinking and reasoning have appeared in the 
literature. According to NDP support materials (Ministry of Education, 2007c, p. 3), 
multiplicative thinking involves: 

constructing and manipulating factors (the numbers being multiplied) in response to a variety of 
contexts…[and] deriving [unknown results] from known facts using the properties of multiplication 
and division [commutative, associative, distributive, inverse]. 

Multiplicative reasoning is far more complex than additive thinking, and can involve 
processes such as repeated addition; grouping; number line hopping; number line 
stretching or compressing; folding and layering; branching; making grids or arrays; area; 
and proportional reasoning. However, it has been argued that “the most flexible and robust 
interpretation of multiplication is based on a rectangle” (Davis, 2008, p. 88), thus 
reinforcing the two-dimensionality of multiplication. An area-based interpretation can be 
used to show how the algorithm for multi-digit whole-number multiplication works, and 
can be extended to multiplication of decimal fractions and common fractions (Davis, 2008; 
Young-Loveridge, 2005a, 2005b). In contrast to multiplicative thinking, additive thinking 
is a linear process involving a single dimension. Number line models typically show 
addition and subtraction as movement either forwards (addition) or backwards 
(subtraction) along a line. Hence the use of a repeated-addition strategy to solve a 
multiplication problem is less advanced than one involving partitioning, manipulating, and 
recombining quantities using the distributive property  (see Ministry of Education, 2006). 
The inclusion of array diagrams as well as number-line models in the NDP framework 
book (Ministry of Education, 2007b) provide examples of the richer, more flexible models 
of multiplication and division. 

With the increased emphasis on multiplicative thinking have come expectations about 
when students should be able to use multiplicative structure. In New Zealand, there is an 
expectation that by the end of Year 8, students are able to reason multiplicatively (Ministry 
of Education, n.d.). However, evidence suggests that only about one third of year 8 
students have good control over multiplicative structures (Young-Loveridge, 2007, 2008). 
Hence it is important to understand more about how teachers can help their students to 
become multiplicative thinkers.  

The purpose of the present study was to explore the teaching of multi-digit 
multiplication using array-based materials in order to understand how different approaches 
by teachers might impact on students’ understanding of multiplication. 
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Method 

Participants 
Seven female teachers (A to G) working at the Year 7/8 level (11- to 13-year-olds) 

from four schools (3 intermediate [year 7-8] and one full primary [year 1-8]) agreed to 
participate in the study. The decile1 ranking of the schools ranged from 2 (low) to 9 (high), 
reflecting the wide range of socio-economic backgrounds of the students. Teachers varied 
in years of teaching experience from approximately 1.5 years to 20 years. Teachers’ 
experience working with the NDP approach ranged from one to seven years. Each teacher 
chose a group of students with which to work on enhancing multiplicative thinking. A total 
of 46 students were present for both lessons and assessments. 

Procedure 
Each classroom was visited twice. At the first visit, the students were given written 

assessment tasks to complete, with instructions to “explain how you worked out your 
answer. Where possible, draw a diagram to help show your thinking.” The eight tasks 
included three on whole-number multiplication: two that involved deriving answers from 
information given and known number facts (If 4 x 30 = 120, what is 4 x 28?   If 5 x 9 = 45, 
what is 5 x 18?); and one multi-digit multiplication problem (What is 11 x 99?). The 
teacher then taught a lesson on multi-digit multiplication while the researchers observed. A 
digital audio-recorder with lapel microphone was worn by the teacher to record as much as 
possible of the language between herself and the students. After the lesson, the researchers 
talked to the students and later to the teacher about their experiences of the lesson, to 
explore their perceptions of the lesson. Two to three weeks later, the students were given 
written assessment tasks related to the lesson. All teachers taught the same lesson based on 
NDP support materials on teaching multiplication and division (Cross Products: 
Multiplication with multi-digit numbers using arrays, see Ministry of Education, 2007c, p. 
67-70). 

Results 

Students’ Prior Knowledge 
Most (36 of 46) students found the answer to 4 x 28, and all successfully solved 5 x 18 

prior to the lesson. Many (22 students) used a rounding and compensation strategy to solve 
the first problem, deriving their answer by using a combination of the information given 
and known number facts (eg, 4 x 30 = 120, 4 x 2 = 8, so 4 x 28 = 120 – 8 = 112). The 
majority of students (29) used a doubling and halving strategy for the second problem (eg, 
5 x 9 = 45, so 5 x 18 = 2 x 45 = 90). Some students (7 on each problem) ignored the 
information given and instead used standard place-value partitioning to work out their 
answers (4 x 20 = 80, and 4 x 8 = 32, so 80 + 32 = 112; and 5 x 10 = 50, 5 x 8 = 40, so 50 
+ 40 = 90). Another group (7 and 9, respectively) used the standard vertical algorithm to 
work out their answers to 4 x 28 and 5 x 18. Students experienced difficulty with the 

                                                
1 Each school in New Zealand is assigned a decile ranking between 1 (low) and 10 (high), based on the latest 
census information about the education and income levels of the adults living in the households of students 
who attend that school 
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problem 11 x 99, with only 20 students getting the correct answer. Five students used a 
rounding and compensation strategy, taking 11 from 1100 to get 1089. Five students used 
standard place-value partitioning, adding 99 to 990. Ten students used the traditional 
vertical algorithm. Four students did not attempt the problem. One notable misconception 
was to multiply the tens digits and the ones digits, but not cross-multiply tens with ones (ie, 
10 x 90 = 900, 1 x 9 = 9, 900 + 9 = 909). Four of the six children in Teacher E’s group 
used this “buggy” strategy. The two other students gave an answer of 999. For example, E2 
wrote on his paper “allways ad [sic] 1 more 9”, while E4 wrote “x11 means 1 extra number 
for the second number that has to be itself”. Four students from other groups also 
responded with 999, including C4 who wrote “11 x 9 = 99, 11 x 99 = 999” suggesting that 
she too may have been following the “add another 9” rule used by E2 and E4. 

The Lesson on Multi-digit Multiplication 
There were many commonalities among the seven teachers in the ways they taught the 

lesson. For example, all but one teacher used a modeling book (a shared recording book for 
the group) to record discussions with the children, and began by talking about their 
planned learning intentions for the lesson. Most discussed the nature of multi-digit 
numbers and associated issues around place value. Although all of the teachers used “dotty 
arrays” (see Figure 1), some were photocopied onto paper for students to draw on with 
pencils or marker pens, leaving a permanent record of the process. Others were laminated 
and students’ recording with a whiteboard pen was erased between problems. Having the 
paper record to refer back to later was an advantage for the teacher and students, as well as 
for the researchers. 

 
 
 
 
 
 
 

 
 
 
 

 
 
 

Figure 1. Student B6’s record of her solution to 23 x 37 = 

Teachers also differed in their approaches in important ways, suggesting that some had 
accurately matched the demands of the lesson with the learning needs of their students, 
whereas others had either underestimated or overestimated the demands of the lesson for 
the group they had chosen to work with (a mismatch). Teachers selecting students whose 
learning needs were well matched to the lesson tended to begin by introducing arrays using 
single-digit multiplication (eg, 5 x 6), and this appeared to be helpful for scaffolding the 
idea of representing multiplication as a rectangle with sides corresponding to each of the 
factors. Drawing a border around the rectangle formed by the two factors turned out to be 
important for students’ understanding. 
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Teacher A, the most experienced teacher, started out by asking the students what they 
noticed about the array, drawing their attention to the regular structure of rows and 
columns of dots and the separation between each group of ten dots so that the 10 by 10 
blocks of 100 dots were easy to see. She then asked them to say how they would show 6 x 
5 = 30 on the array, eventually telling them to draw a border around it. In the interview, 
Teacher A commented in the interview about the importance of drawing a border around 
the part of the dotty array that represented the problem, saying said “the border is definitely 
the key word for me – that’s why I underline it [on the whiteboard]”). 

The students in Teacher A’s group (only one of whom had answered 11 x 99 correctly 
prior to the lesson), made substantial progress towards understanding multiplication during 
the lesson. Six of the seven in the group successfully used the dotty arrays to work out the 
partial products for 23 x 37. Three of them added the partial products to get 851 (and one 
got 841). Two students did not take the final step of adding the partial products. The only 
student who did not appear to benefit from the array materials (A3) got partial products of 
600, 30, and 70, summing them to 700. She wrote 3 x 10 = 30 (instead of 3 x 30 = 90), 
only noticed one group of 70, and completely overlooked the 3 x 7. It was interesting to 
note that for 11 x 99 prior to the lesson, she wrote 110 - 11 = 99, failing to notice that her 
answer was the same as one of the factors. 

Teacher B, who taught the lesson for the first time on the day of the observations, 
commented that in the future she would start by stressing the importance of drawing a 
border around the whole problem. However, at least two of her students benefited from 
their work with the array, progressing from difficulties with 11 x 99 prior to the lesson, to 
successfully working out 23 x 37 several weeks after the lesson. All but one of Teacher B’s 
students was able to use dotty arrays to work out 23 x 37, although two students failed to 
add their partial products together at the end. The only student who did not succeed had 
accidentally drawn his array as 23 x 38, resulting in partial products of 160 and 24 instead 
of 140 and 21. 

Teacher E had the additional challenge of overcoming a “buggy” algorithm (ie, 11 x 99 
= 10 x 90 + 1 x 9) taught by another teacher, but two of her students seemed to benefit 
from the work with dotty arrays. The other students continued to use the vertical written 
algorithm before drawing borders around unconnected partial products. 

Mismatches between Students’ Learning Needs and the Lesson 
Teacher C chose the lowest of her three groups for the lesson, but may have 

underestimated how demanding the lesson would be for them. She did not emphasize the 
importance of drawing a border around the whole problem initially, or lead into the lesson 
gradually by working with single-digit multiplication problems first. Her students tried to 
work out the answer to 23 x 37 initially using an algorithmic approach, then fitting the 
array to that answer, often drawing borders around separate and unconnected cross 
products. The result was a separate rectangle for each cross product, without connection to 
the original factors or the total product. Teacher C did not intervene by asking her students 
to start with a border around the whole problem. However, she was aware that her students 
had found the lesson difficult, saying “they found it really, really hard”. 

Teacher C’s students all appeared to be confused about the use of dotty arrays to solve 
multi-digit multiplication problems. In the written assessment task completed several 
weeks after the lesson, not one student was able to work out the answer to 23 x 37. It was 
evident that most of them had major issues with place value, confusing tens with hundreds, 
and doing addition instead of multiplication. For example, C1 coloured in three blocks of 
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100 and a row of seven dots (37), and below this, coloured two blocks of 100 and a row of 
three dots (23), then “plused [sic] them together” and wrote her answer of 60 (the sum 
rather than the product of 23 and 37) (see Figure 2). C2 drew a border around six blocks of 
100 (3 across and 2 down), then a separate border around 21 dots in a 3 x 7 array to the 
right of the block of 600. He added 600 and 21 to get an answer of 621. C3 drew two 
almost identical arrays to C2, but cut out one block of 100, writing “20 x 30 = 500”, then 
added the 500 and the 21 from the 3 x 7 array to get an answer of 521. Although C4 drew a 
border around 37 by 23, like C1 she used a highlighting pen to colour in three blocks of 
100 and a row of seven dots (37), and below this, coloured two blocks of 100 and a row of 
three dots (23), giving the answer as 60. C5 drew a border around an array of 30 by 20, and 
a border around the 7 by 20 array adjacent to the 600. However, there were also borders 
around 3 by 7, directly below the 30 x 20, and around a 3 by 3 array (instead of 3 x 30) 
below the 7 by 20 array, resulting in the sum of cross products being 770. C6 drew a 
border around three blocks of 100, and highlighted a column of three dots on the top left 
corner of the third block (23). Underneath she drew a border around four blocks of 100, 
highlighting a column of seven dots on the top left corner of the fourth block (37). She 
wrote: “Split the numbers, go back 2 x 3 = 6 and 3 x 7 = 21 then add 10 back onto 
[drawing an arrow pointing to the 3 in 2 x 3], add them together to equal 81”. It was 
interesting to note that prior to the lesson, C3, C4, and C6 had all given 999 as the answer 
to 11 x 99 in the initial assessment. Only C2 had correctly partitioned the 99 into 90 and 9 
and calculated partial products of 990 and 99 (she made an error in summing these, getting 
a final answer of 1098). 

 

 
 

Figure 2. The response of student C1 showing confusion between “tens” and “hundreds,” and between 
addition and multiplication. 

It was interesting to note that Teacher C had started straight into the lesson with 23 x 
37 without first introducing arrays using single-digit multiplication problems. She accepted 
her students’ strategies of drawing borders around unconnected partial products, and 
appeared uncertain about how to respond to this. Teacher C’s comment that her students 
“still struggle a little bit with place value” reflected her awareness this probably 
contributed to their difficulty using the arrays. It is possible that Teacher C did not have a 
solid understanding of the rectangular structure of multiplication herself, and this might 
explain why she did not recognise the importance of drawing a border around the whole 
problem initially. 



 

 641 

Teacher G chose students who already had a good understanding of multiplication, 
apparently overestimating their learning needs. Prior to the lesson eight out of nine had 
solved 11 x 99 successfully. During the lesson, most used the grid method rather than the 
arrays to work out their answers. They were all able to draw borders and partition the array 
appropriately and all but one got the correct answer. 

Discussion 
The findings of this study suggest that arrays can be useful for enhancing students’ 

understanding of multi-digit multiplication, providing there is a good match with their 
learning needs. Students needed to have good place value understanding in order to 
partition the two-digit factors into tens and ones and operate with them in the context of 
multiplication. Dotty arrays enabled the process of multi-digit multiplication to be 
represented as a rectangle with sides corresponding to the two factors, and this was 
consistent with Davis’ view that, “the most flexible and robust interpretation of 
multiplication is based on a rectangle” (2008, p. 88). The dotty arrays help students to 
appreciate differences in the magnitude of partial products, and the impact of place value 
on the size of the sections (ie, partial products) within an array. For example, the six blocks 
of 100 dots representing 20 x 30 (the “tens”) was substantially larger than the 21 dots in 
the 3 x 7 (the “ones”) array. The results reported here support the views of Mulligan and 
colleagues (see Bobis et al, 2008; Mulligan et al, 2004) that coming to understand the 
underlying structure of the mathematics is vitally important for effective mathematics 
learning. 

Some students who were already using vertical written algorithms or the “grid” method 
had difficulty understanding how arrays could be useful for solving multiplication 
problems. An emphasis on procedural knowledge and rules (without understanding), as 
reflected in the use of algorithmic approaches to multiplication, may undermine conceptual 
understanding. As Pesek and Kirschner (2000) have shown, once students have been 
trained to use standard written algorithms, it can be extremely difficult to then try to help 
them develop relational understanding. It is rather unfortunate that in the NDP support 
materials (Book 6), the lesson on traditional written algorithms for multiplication (Paper 
Power) comes before rather than after the lesson on using dotty arrays to make sense of 
multi-digit multiplication. The findings of the study are consistent with the idea that 
teachers’ knowledge and understanding of mathematics has a great impact on their 
teaching (see Ball, Hill & Bass, 2005; Hill, Rowan & Ball, 2005). It is clear that 
multiplicative reasoning is complex and multi-faceted. There are many challenges for 
teachers to fully understand the many aspects of multiplicative thinking and then decide on 
the best ways to support their students in acquiring that conceptual understanding. 
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